An improived deep learning methodology for golf ball
intial velocity estimation from doppler signal

Artur Habuda
233190

Xixi Wang
s232253

Alexandru-Stefan Marin
5232414

Vincenzo Genovese
232434

December 15, 2024

1 Introduction

TrackMan uses advanced radar and camera tech-
nology to capture precise data on golf club motion
and ball trajectory, such as ball speed, spin rate and
launch angle, to help athletes train. But the sig-
nal is confounded by noise arising from other moving
components during the swing. Therefore, we need to
estimate the initial radial velocity of the ball after the
club hits it based on the spectrum converted from the
time domain waveform of the Doppler radar.[I] To
achieve these goals, we introduce skip connections,
which improve the flow of information between layers
and eliminate the gradient problem, an approach that
allows the network to be efficiently trained without
a significant increase in parameters and Global Aver-
age Pooling to decrease the number of parameters.
Two different models are designed.

2 Project Goals

The primary focus of this project was to estimate the
radial velocity of a golf ball using six-channel spectro-
gram data as input for a Convolutional Neural Net-
work (CNN). The objective was to achieve higher
accuracy in velocity estimation while minimizing the
number of trainable parameters in the model, with
respect to a Baseline model.

3 Data

The dataset consists of six-channel spectrogram data
.4 power channels: these channels capture the scat-
tering properties of the signal and are primarily used
for ball detection. 2 phase channels: these channels
provide phase difference information, which is critical
for velocity estimation.

These radial velocities can be interpreted from the
Doppler shift observed by the radar system accord-

ing to eq. (I)):

(1) Ve = Tfa/ (2% fo) x C

where v, is the radial velocity, f, is the Doppler shift,
fo is the centre frequency of the transmitter, and ¢
is the speed of light.

Figure 2: Phase Spectro-
gram

Figure 1: Power Spectro-
gram

The spectrogram data available for this project was
cropped beforehand removing non-informative ar-
eas. Thus the working data are extracted sub-
spectrograms of time in [-150, +200]ms and velocity
in [-60, + 15]m/s. These spectograms are saved in
".npy" format, which is later min-max normalized,
channeld-order swapped and interpolated to a fixed
size for input for the CNNs(height=79, width=918,
channels=6).

The dataset was split into training (1700 samples,
77.9%), validation (83 samples, 3.8%), and test
(400 samples, 18.3%) sets. The initial split proposed
by Trackman had test and validation splits switched.
Although a higher sample count on the validation
set, would have helped a more informed fine-tuning
of the hyperparameters, it was decided to keep the
test set bigger, in order to obtain a more robust final
evaluation of the model.

4 Implementation

With the project goals in mind and after several it-
erations of trial and error, two main models came to
fruition Residual-ReLU Regressor(RU) and Squeeze-
Excite Residual-SiLU Regressor(SU). Next, an or-
dered description of the design process of both is
presented:

Aiming to decrease Baseline's (BL) parameters,
Global Average Pooling(GAP) was introduced after
the convolution layers. Instead of flattening each

| MaxPool [
MaxPool 32 Conv3

Conv2

Convl

371200 1024> 256> [

Flatten FC1 FC2 Outpu

128 MaxPool
MaxPool
Conv4

Figure 3: Baseline (BL) Architecture Diagram.

MaxPool 32

Conv2a

Figure 4: Residual-ReLU (RU) Architecture Diagram.

component of the feature maps and using them as
input for each neuron in the final FCNN, GAP com-
putes the average value of each feature map, effec-
tively summarizing the information in that map into a
single value. [2]. The objective of implementing GAP
was two-fold; to reduce significantly the amount of
parameters of the model, and to reduce overfitting
(which was a common issue when training BL, Figs.
[6} [7). In order to offset the aggressive reduction
in dimensionality by GAP, while maximixing the re-
tained information trough the network, MaxPool2D
layers ere replaced with Convolutional Layers. The
results were not ideal, therefore residual connection
were incorporated, trying to include past information
and reducing the risk of vanishing gradients. Ad-
ditionally batch normalization was added in order to
enhance convergence speed and training stability. Al-
though the RU model was not very deep, leackyRelLU
was implemented in order to try to stabilize training.
LeackyRelLU allows a small, non-zero gradient for
negative inputs; this allows the model to address the
dying neuron problem and stabilize training, as more
neurons contribute to learning. Nonetheless it is ex-
pected to extend the training time. Dropout was also
included as a regularization technique. Other config-
urations that were tried on top of this model archi-
tecture, but which did not present improvements in
testing were: an Adam optimizer, Kaiming-weights
initialization, adaptive learning rate trough a sched-
uler and gradient clipping. Specifics on the impact
of some of these parameters are show in table 2]

Training and prediction tests (discussed in Section
highlighted several challenges, including prolonged
training and inference times, as well as convergence

instability. To address these issues, a third model was
devised, the Squeeze-Excite Residual-SiLU (SU).

Squeeze-and-Excitation (SE) blocks were introduced
to enhance the feature extraction process by recal-
ibrating channel-wise feature importance. The SE
mechanism performs two key operations: Squeeze,
where global average pooling compresses spatial di-
mensions to summarize each feature map into a
single representative value, and Excitation, where
adaptive scaling factors are learned and applied to
each channel, amplifying informative features and
suppressing irrelevant ones. This was achieved by
creating a SE block that consists of Global Aver-
age Pooling (GAP) followed by two fully connected
layers with LeakyRelL U and Sigmoid activations, dy-
namically scaling feature maps to emphasize informa-
tive channels and suppress less relevant ones. This
channel-wise attention mechanism should improve
the model's ability to focus on critical patterns in the
input data, leading to better feature representation.

The SU model also replaced the LeakyRelU acti-
vation function with SiLU (Swish), which is known
for providing smoother gradients, enhancing train-
ing stability, and improving convergence. By allow-
ing smoother transitions between activation states,
SiLU reduces abrupt gradient updates, contributing
to faster and more reliable training.

Each subsequent model aimed to address the limita-
tions of its predecessor by incorporating architectural
innovations and fine-tuning hyperparameters.

20f

Figure 5: Squeeze-Excite Residual-SiLU (SU) Architecture Diagram.

4.1 Summary of Hyperparameters

Table [T] highlights the key architectural features, hy-
perparameters, and performance metrics for all three
models.

Hyperpara: Baseline Residual- | Squeeze-
meters (BL) RelLU Excite-
(RU) SiLU
(SU)
Activation | RelLU LeakyRelLU| SiLU
Function (slope=
-0.01)
Optimizer | SGD SGD SGD
Learning 107> 107> 107>
Rate
Batch 10 10 10
Size
Dropout None 0.4 0.4
Rate

Table 1: Comparison of hyperparameters for BL, RU, and
SU models.

4.2 Challenges and Lessons Learned

Despite the improvements, the RU model intro-
duced computational overhead due to the sequences
of computations, but yet is the better performing
model. While the addition in the number of parame-
ter for SU and the more advanced technique adopted
in implementing the architecture, it could not over-
come the results in error of RU. However, the training
time for SU is lower than RU.

5 Results and Evaluation

All models rapidly decrease in training loss early on.
After that BL's training loss continues to decrease
steadily trough 500 epochs, achieving a notably lower
RMSE than the other two models. RU and SU main-
tain a relatively higher training loss to baseline, with
a slight edge for SU. Convergence

The picture changes in the validation phase. The
curves in this phase are significantly more volatile,
particularly early in the training. This suggests diffi-
culties in generalization or sensitivity to certain sam-
ples/batches. The baseline model demonstrates rela-
tively lower and more stable validation losses, eventu-

ally plateauing at a consistent level. Despite incorpo-
rating residual connections and batch normalization,
RU's validation loss shows the most unstable behav-
ior. SU, although still unstable, shows slightly more
invariable validation loss than SU. It seems that in-
corporating SILU and and the Squeeze-Excite blocks
had the expected effect, as explained in[4] The train-
ing RMSE plots mirrors the loss behavior in Fig [g]

train_loss

— Baseline — Residual-ReLU Regressor = Squeeze-Excite Residual-SiLU Regressor $

epoch

50 100 150 200 250 300

Figure 6: Train Loss in logarithmic scale of BA, RU and
SuU.

val_loss
= BaseLine = Residual-ReLU Regressor = Squeeze-Excite Residual-SiLU Regressor s
1400
1200
1000
800

400

|
600 "

200
_ epoch

50 100 150 200 250 300

Figure 7: Validation Loss in logarithmic scale of BA, RU
and SU.

log_train_rmse
= BaselLine = Residual-ReLU Regressor = Squeeze-Excite Residual-SiLU Regressor v

0 100 200 300 400

Figure 8: Train RMSE in logarithmic scale of BA, RU
and SU.

3 of

log_val_rmse

— Baseline — Residual-ReLU Regressor — Squeeze-Excite Residual-SiLU Regressor

o

0 100 200 300 400

Figure 9: Validation RMSE in logarithmic scale of BA,
RU and SU.

Note that validation convergence is reached no fur-
ther than at around epoch 200 for any of the models.
In order to maximize clarity, loss results are shown
only until 300 epochs, and rmse outcomes are shown
in log scale. Thus, both sets of graphs showcase
best, the variability in results for all models, at the
key stages of training and validation.

In Figure. [I0] the results of the three models are
shown.

Comparison of Models: Test Time, Training Time, RMSE, and Parameters

1751 mmm Test Time (s)
Log of Training Time
150 Test RMSE

mm Log of Total Parameters

Values

BaseLine Residual-ReLU Regressor Squeeze-Excite Residual-SiLU Regressor

Models

Figure 10: Final results outcomes of chosen three mod-
els: test RMSE, log. of training time, inference time and
log. of parameter count.

In table [2] the impact of certain changes in the hy-
perparameters of RU, on the test RMSE values is
shown.

| Adam | Kaiming | SILU
Test RMSE | +41.89% | +6.64% | +7.99%

Table 2: Impact of different hyperparameters(Adam opti-
mizer, Kaiming Weights Initialization and SiLU activation
function) on TEST RMSE of RU.

It shall be noted that these hyperparameter changes
are specific to the RU architecture; other architec-
tures may be affected differently. For example, SU
saw a +1.54% increase in test RMSE when using
leackyRelLU instead of SILU.

RU provides the best test RMSE at the lowest pa-
rameter count. On the other hand, SU provides a
good compromise between good performance and
improved inference and training time over RU. As
defined by Trackman, RU is the model that per-
forms best. Nonetheless, it has been decided to keep

SU in this evaluation, as it validates some of the
design modifications that were hypothesized to ad-
dress RU's issues. Moreover, in applications in which
Trackman had to run inference in real-time or; had
to deploy a model in short-notice, SU would prove
useful.

6 Conclusion and Further Work

The objective of this work has been successfully
achieved. The Residual-RELU model, presents a
15% improvement in test RMSE, as well as a reduc-
tion in parameter count, down to 1% of the orig-
inal baseline model. Moreover, the Squeeze-Excite
Residual SILU model, achieves significant inference
and training time reductions, at a still, 3% better
test RMSE and a relative parameter count of 2%.
A logical process for the emergence of these models
has been also described; allowing for the reproduc-
tion of the models, as well as serving as a guideline
for the architectural choices made.

However, we recognize that there is room for im-
provement and that there are some points that are
left unresolved, setting the path for future work:

« Although the presented models beat the base-
line models in the categories specified in the
project goals, the consistency of the models
wasn't desirable.

+ Perhaps, a more exhaustive ablation study on
the impact of all the tested hyperparameters,
on the performance of the models, could have
provided a more complete view of the a design
choices made for the models. Time and re-
sources availability to test the models were the
main impediment in this regard.

» Further exploration of hyperparametrs and
model designs could have help explain the in-
stability of some models, as well as improve in
terms of Trackman's goals definition.

« Further improvements reaching outside of the
architecture itself can be explored; for example,
a Knowledge Distillation framework(an idea
implemented by another team in Trackmans's
project), using our RU model as teacher, might
give further reductions in model parameters
while keeping similar performance.

A notebook and set of scripts used for this project
are available in a public |github repository[3].
Note that the results are not fully reproducible
due to confidentiality agreements with Track-
man. The data provided has been synthetically
created, with the same shape and format as the
original one[4].

4of

https://github.com/arturaah/Trackman_doppler.git

References

[1] J. Bowler. Eddy-current inversion for the determination of crack geometry. https://ieeexplore.
ieee.org/document/757644. Accessed: 2024-12-13.

[2] Global average pooling explained. https://paperswithcode.com/method/
global-average-pooling. Accessed: 2024-12-12.

[3] Artur Aah and Contributors. Trackman doppler, 2024. URL https://github.com/arturaah/
Trackman_doppler. Accessed: 2024-12-21.

[4] OpenAl. Chatgpt: Assisting with ideation and code completion. https://chat.openai.com/, 2024.
ChatGPT was used for ideation and code completion in this work.

50f

https://ieeexplore.ieee.org/document/757644
https://ieeexplore.ieee.org/document/757644
https://paperswithcode.com/method/global-average-pooling
https://paperswithcode.com/method/global-average-pooling
https://github.com/arturaah/Trackman_doppler
https://github.com/arturaah/Trackman_doppler
https://chat.openai.com/

	Introduction
	Project Goals
	Data
	Implementation
	Summary of Hyperparameters
	Challenges and Lessons Learned

	Results and Evaluation
	Conclusion and Further Work

