
Modelling Go Fish using PLCC: Comparing Classic
Heuristics and Deep Learning through a Bayesian

Implementation

Artur Habuda
s233190

Frithjof Sletten
s204477

Mario Vicente
s230243

Stine Madsen
s204425

December 5, 2024

1 Introduction
Propositional logic has long been a tool in many areas
of knowledge; for theorem proving in mathematics,
the analysis of arguments and their logical validity in
philosophy, and representing and manipulating logical
expressions, used in control theory or programming.
Moreover, epistemic logic, which builds upon atomic
propositional logic, and provides the tools to reason
about knowledge, has further expanded these appli-
cations. These tools have been hypothesized to serve
well the function of building blocks of artificially in-
telligent systems and their environments [1]. Games
provide the perfect controlled playground to test this
conclusion. Epistemic logic is especially relevant in
games with imperfect information such as Go Fish
which we will focus on in this paper. Go Fish is a
multiplayer card game where players compete to col-
lect sets of four cards with the same rank, known
as "books". Like many popular games, Go Fish has
several rule variations. We will consider two-player
games with the following rules[2]:

1. Each player is initially dealt a hand of 7 cards.

2. A player can only ask their opponent for cards of
a particular rank if they hold at least one card of
that rank.

3. If the player guesses correctly, the opponent must
give them all their cards of the requested rank,
and the player gets another turn.

4. If the guess is incorrect, the opponent rejects the
request by saying "Go Fish!"

5. In this case, the player "fishes" by drawing a card
from the remaining deck, and it now becomes the
opponent’s turn to ask.

6. If a player runs out of cards during the game, they
must draw a card from the deck.

After this introduction the rest of the paper follows
our contributions:

• In section 2 we present the concepts of Epistemic
logic, Dynamic Epistemic Logic and Probabilistic
Logic of Communication and Change that are es-
sential for understanding the project.

• In section 3, we use PLCC[3] to model a two-player
game of Go Fish, which uses a Bayesian Kripke
Model to capture the probability of each player’s
hand. We also define the Event Model, which up-
dates the Bayesian model after each event. Finally,
we provide an example demonstrating how these
models are applied using a small deck of cards.

• In section 4 we present the alterations made to the
model that make it possible to simulate the game.
This section also introduces the Deep learning al-
gorithm that we will compare our heuristics against.

• In section 5 we provide a brief description of all
the heuristics implemented for this paper as well as
an analysis of the outcomes of the benchmarking
including all heuristics and the Neural Network.

Finally, we conclude and discuss future work in sec-
tion 6.

2 Background
Epistemic Logic
Epistemic Logic is a branch of modal logic that
formalizes reasoning about knowledge and belief in
multi-agent systems. It introduces several key con-
cepts such as:

• A formalization of the idea of knowledge: which
is defined as the set of prepositions that hold in
every possible world.

• The Ka operator: which is a modal operator that
expresses the knowledge of a given agent "a".

• The concept of Mutual Knowledge: that in-
cludes in multi agent scenarios both the ideas of

1

Common and Distributed knowledge (the knowl-
edge shared by all agents and their collective knowl-
edge, respectively).

• A set of axioms and properties:

– Truthfulness of Knowledge:
Kaφ =⇒ φ

– Introspection of knowledge:

∗ Positive:
Kaφ =⇒ KaKaφ

∗ and negative:
¬Kaφ =⇒ Ka¬Kaφ

Dynamic Epistemic Logic
Dynamic Epistemic Logic is an extension of Epis-
temic logic that models how knowledge and beliefs
of agents change due to events, actions, or commu-
nications.

In the game of Go Fish for example there are two
elements that affect the player´s knowledge:

• Asking for a rank allows the enemy player to know
that you posses it but it also means that he will
have to give any elements of that rank he was hold-
ing onto to you.

• Drawing a card also updates the belief of the agents
although like in many card games, these beliefs are
represented by a probability distribution over the
cards.

Probabilistic Logic of Communication
and Change
Probabilistic Logic of Communication and Change
or PLCC is a framework that combines both DEPL
(Dynamic Epistemic Probabilistic Logic) and LCC
(Logic of Communication and Change). According
to it´s creators, PLCC "captures in a unified frame-
work subjective probability, arbitrary levels of mu-
tual knowledge (including common knowledge) and
a mechanism for multi-agent Bayesian updates that
can model complex social epistemic scenarios."[3].
Meaning that it has the potential to model proba-
bilistic uncertainty in multi agent environments even
when working with epistemic logic including mutual
knowledge, thus making it a really interesting frame-
work for our study case.

PLCC uses several key constructs such as Bayesian
Kripke models, substitutions, event models, and
the product update rule.

• Bayesian Kripke models form the backbone of
PLCC, representing agents’ knowledge and beliefs
via states, indistinguishability relations, and subjec-

tive probability distributions (Refer to Appendix B
Definition 1).

• Substitutions are functions that update the val-
uation of atomic propositions to reflect factual
changes in the environment (Refer to Appendix B
Definition 2).

• Event models, define a set of possible events, their
preconditions, and subjective occurrence probabili-
ties, capturing the dynamics of communication or
interaction in multi agent environments (Refer to
Appendix B Definition 3).

• The product update rule, that integrates
Bayesian conditioning with epistemic updates, con-
structing new models that account for changes in
both beliefs and knowledge as a result of events
(Refer to Appendix B Definition 4).

The semantics of PLCC formalize how formulas are
evaluated in this setting, ensuring consistency and
capturing the interplay between static knowledge and
dynamic updates (Refer to Appendix B Definition 5).

3 Modelling

Bayesian Kripke Model
We start by defining the static Bayesian Kripke model
per definition 1 used to represent each step of the
game. First, we need a way of describing how cards
are distributed among the players. Based on the
game’s rules, each player’s primary focus is on the
number of cards of each rank in the opponent’s hand
or the deck. Making the suit of each card irrele-
vant. As a result, each player’s hand and the deck
can be represented as a multiset. To encode this in
our model, we introduce the atomic proposition Rr ki
which denotes "player i has k cards of rank r". We
will now impose constraints to ensure that each card
originally in the deck is counted exactly once. To
begin, we define the parameters of the game:

• The ranks in the deck N = {1, . . . , n}.

• The multiplicity of each rank M = {0, . . . , m}
where m denotes the size of each suit.

• The players P = {0, 1, 2} where 0 represents the
deck, treated as a player with no actions. We as-
sume the players are truthful, rational and have per-
fect perception.

• The initial hand size h.

We also define the set of all possible multiplicities of
a rank for the player i as Rri = {Rr ki | k ∈ M}.

2 of 12

First, we ensure that each player has exactly one mul-
tiplicity per rank.

c1 =
∧
r ∈N

∧
i ∈P

∨
Rri ∧

∧
Rr ki ,Rr

l
i ∈Rri

k ̸=l

¬(Rr ki ∧ Rr li)

Secondly, the total multiplicity of each rank across
all players’ hands must match the suit size m.

c2 =
∧
r ∈N

∧
(Rr

k0
0 ,...,Rr

kp
p)∈

∏
i ∈P Rri

m ̸=
∑
i ∈P ki

¬
∧
i ∈P

Rr kii

With these two constraints as common knowledge,
a player can deduce the location of remaining cards
based on their knowledge about the deck and their
opponent’s hand. We must also ensure that play-
ers cannot observe the multiplicity of the other play-
ers’ ranks or the deck. This is captured by the
indistinguishability relation, where for both players
j ∈ {1, 2}, ∼j is the smallest equivalence relation
on S such that:

Rr ki ∼j Rr li
for every i ∈ P, r ∈ N, k, l ∈ M, i ̸= j

We can now define the initial game model M0 =
(S,∼, µ, V). It consists of a single world, where all
cards are in the deck, and both players know they are
in this world:

S = {w0}
µw0i (w0) = 1 for i ∈ {1, 2}

V (p)

{
{w0} if p ∈ {Rrm0 | r ∈ N}
∅ otherwise

To update this model and allow players to take ac-
tion, we need to define an event model that specifies
how the existing model changes in response to each
action.

Event Model
We divide the game’s actions into four events:

E = {askr,t,i ,j ,giver,x,y ,i ,j ,
gofishr,i ,j ,drawr,x ′,y ′,t ′,i ,j}

where i , j ∈ {1, 2}, i ̸= j,
r ∈ N, x, y ∈ {1, . . . , m − 1},
x ′ ∈ {0, . . . , m − 1}, y ′ ∈ {1, . . . , m},
t ∈ {1, . . . , n}, t ′ ∈ {1, . . . , n ·m}

• askr,t,i ,j - player i , holding t cards of different ranks,
asks player j if they have any cards of rank r .

• giver,x,y ,i ,j - player i gives x cards of rank r to player
j , who requested cards of rank r and already holds
y of them.

• gofishr,i ,j - player i tells player j , who requested
cards of rank r , to "Go Fish!". This means player
i does not have the cards player j requested, and
they must draw instead.

• drawr,x,y ,t,i ,j - player i , holding x cards of rank r ,
was told to go fish by player j . Player i then draws
a card of rank r from the remaining t cards, which
contain y cards of rank r . This event is also used
for dealing cards at the start of the game and when
a player runs out of cards.

We can now define the non-trivial cases of the in-
distinguishability relation for both players j ∈ {1, 2},
∼j which is the smallest equivalence relation on E
where:

∀i ̸= j, r, r ′, x, x ′, y , y ′, t.(1)

drawr,x,y ,t,i ,j ∼j drawr ′,x ′,y ′,t,i ,j ∧
∀i ̸= j, r, x, y , y ′.t.(2)

drawr,x,y ,t,i ,j ∼i drawr,x,y ′,t,i ,j ∧
∀i ̸= j, r, t, t ′.(3)

askr,t,i ,j ∼j askr,t ′,i ,j ∧
∀i ̸= j, r, x, y , y ′.(4)

giver,x,y ,i ,j ∼i giver,x,y ′,i ,j

(1) Expressing that player j can not tell what player i
drew. And that when player i draws (2) they do not
know how many cards of that rank there were in the
deck. Furthermore when player i asks (3) player j ,
they cannot tell how many unique ranks player i has
on their hand. Lastly, when player i gives (4) cards
of rank r to player j , player i is unsure how many
cards of this rank player j already had in their hand.
However, it can still be inferred that player j had at
least one card of this rank.

In addition to the previously introduced atomic
proposition for representing cards, we will need three
additional ones, to ensure the players adhere to the
rules. TURNi indicates whether it is currently player
i ’s turn, while ASKr,i ,j denotes that player i has
asked player j if they have any cards of rank r . Addi-
tionally, GOFISH indicates that the player who has
their turn must draw a card.

At = {Rr ki | r ∈ N, i ∈ P, k ∈ M} ∪
{TURNi , ASKr,i ,j , GOF ISH}
where i , j ∈ {1, 2} i ̸= j, r ∈ N

3 of 12

Now, we can define the main parts of the event model
A = (E,∼,PRE, pre, sub) per definition 3. We start
by defining the preconditions of each event.

PRE(e) =

{φASKr,t,i ,j} if e = askr,t,i ,j

{φGIV Er,x,y ,i ,j} if e = giver,x,y ,i ,j

{φGOFISHr,i ,j } if e = gofishr,i ,j

{φF ISHr,x,y ,t,i ,j ,

φDEALr,x,y ,t,i ,j ,

φEMPTYr,x,y ,t,i ,j}

if e = drawr,x,y ,t,i ,j

First, we introduce a formula that captures the re-
curring components of each precondition. It ensures
that all events adhere to the card constraints and
turn order, including the restriction that a player can-
not request multiple ranks in a single turn.

χi ,j,r s = c1 ∧ c2 ∧ (TURNi ∧ ¬TURNj) ∧∧
r∈rs
¬ASKr,j,i ∧∧

r∈N\rs

¬(ASKr,i ,j ∨ ASKr,j,i)

Players can ask for a rank at the start of their turn.
In this case, they will ask for a random rank in their
hand. For simplicity, we assume that players keep
their books in their hands. Therefore, we also need
to ensure that they do not request a card they al-
ready have four copies of.

φASKr,t,i ,j = ¬Rr0i ∧ ¬Rrmi ∧ φUNIQUEi,t ∧ ¬φDEAL

∧ χi ,j,∅ ∧ ¬GOFISH

If the opponent has cards of the requested rank, they
must give them to the player who asked. Otherwise,
they will tell them to Go Fish.

φGIV Er,x,y ,i ,j = ASKr,j,i ∧ Rr xi ∧ Rr
y
j ∧ χj,i ,{r}

∧ ¬GOFISH
φGOFISHr,i ,j = ASKr,j,i ∧ Rr0i ∧ χj,i ,{r}∧

¬GOFISH

There are several scenarios in which a player must
draw a card. The first is when the opponent says
Go Fish. The second occurs at the beginning of the
game when each player is dealt their hand in alter-
nating order. The third happens when a player runs
out of cards, and must draw a card from the pile at

the start of their turn.

φDRAWr,x,y ,t,i ,j = Rr
x
i ∧ Rr

y
0 ∧ φ

TOTAL
t ∧ χi ,j,∅

φF ISHr,x,y ,t,i ,j = φ
DRAW
r,x,y ,t,i ,j ∧ GOFISH

φDEALr,x,y ,t,i ,j = φ
DRAW
r,x,y ,t,i ,j ∧ ¬GOFISH ∧ φDEAL

φEMPTYr,x,y ,t,i ,j = φ
DRAW
r,x,y ,t,i ,j ∧ ¬GOFISH ∧

¬φDEAL ∧
∧
r∈N

Rr0i

In the preconditions, we have used the following def-
initions for simplification. φDEAL ensures that each
player draws cards until they each have h cards at
the start of the game. φTOTALt ensures there are ex-
actly t cards remaining in the deck. φUNIQUEi,t ensures
player i has t unique ranks in their hand.

φDEAL =
∧

(Rr
k0
0 ,...,Rr

kr
0)∈

∏
r∈N Rr0∑

r∈N kr≤n·m−2h

¬
∧
r∈N

Rr kr0

φTOTALt =
∧

(Rr
k0
0 ,...,Rr

kr
0)∈

∏
r∈N Rr0

t ̸=
∑
r∈N kr

¬
∧
r∈N

Rr kr0

φUNIQUEi,t =
∧

(Rr
k0
i ,...,Rr

kr
i)∈

∏
r∈N Rri

t ̸=
∑

r∈N
0<kr<m

1

¬
∧
r∈N

Rr kri

The latter two are useful for distributing subjective
occurrence probabilities across each event, which we
will now define with pre. When a player asks, they
randomly select a rank from their hand. Since t rep-
resents the number of unique ranks in their hand, the
probability of selecting a specific rank is 1t . Similarly,
the probability of drawing a card of rank r depends
on how many cards of that rank, y , remain in the
deck and the total number of cards, t. Thus, the
probability is yt . Meanwhile, give and gofish must
occur in a specific way in response to the question
asked, as players are assumed to be truthful.

pre(e | ϕ) =

1/t

if ∃r, t, i ̸= j :
e = askr,t,i ,j &
ϕ = φASKr,t,i ,j

1

if ∃r, x, y , i ̸= j :
e = giver,x,y ,i ,j &
ϕ = φGIV Er,x,y ,i ,j

1

if ∃r, i ̸= j :
e = gofishr,i ,j &
ϕ = φGOFISHr,i ,j

y/t

if ∃r, x, y , t, i ̸= j :
e = drawr,x,y ,t,i ,j &
ϕ ∈ {φF ISHr,x,y ,t,i ,j , φ

DEAL
r,x,y ,t,i ,j ,

φEMPTYr,x,y ,t,i ,j}

0 otherwise

4 of 12

We can now define sub, which describes how the
truth assignment of each atomic proposition changes
based on each event. For most properties, it acts
as the identity function. The preconditions of each
event lead to a similar outcome determined by the
variables assigned to the event. As a result, we al-
ways assign an atomic proposition as true or false in
all worlds. For example, in a giver,x,y ,i ,j event, this
ensures that when player i gives cards to player j ,
player i no longer holds any cards of that rank, and
player j gained the same number of cards that player
i lost.

sub(e, p) =

⊤ if e = askr,t,i ,j & p = ASKr,i ,j

⊥
if e = giver,x,y ,i ,j &
p ∈ {Rr xi , Rr

y
j , ASKr,j,i}

⊤
if e = giver,x,y ,i ,j &
p ∈ {Rr0i , Rr

y+x
j }

⊥
if e = gofishr,i ,j &
p = ASKr,j,i

⊤
if e = gofishr,i ,j &
p = GOFISH

⊥
if e = drawr,x,t,y ,i ,j &
p ∈ {Rr xi , Rr

y
0 ,

TURNi , GOF ISH}

⊤
if e = drawr,x,t,y ,i ,j &
p ∈ {Rr x+1i , Rr y−10 ,

TURNj}

p otherwise

For simplicity, we chose to let players ask for a ran-
dom rank in their hand. However, by adding the
following, we could have narrowed down the player’s
choice by requiring them to select a rank they believe
the other player is most likely to have1.∧
q ∈N\{r}

Pi(¬(Rr0j ∨ Rrmj)) ≥ Pi(¬(Rq0j ∨ Rqmj))

Initially, all cards are in the deck and it is player 1’s
turn as encoded in the following formula:

χ = χ1,2,∅ ∧ ¬GOFISH ∧
∧
r∈N

∧
k∈M\{m}

¬Rr k0

These assumptions must all be common knowledge
in the initial Bayesian model. As mentioned earlier,
the draw event introduces significant uncertainty, as
a player does not know which card their opponent
drew from the pile. This raises the question: if we
use a standard deck, with 13 ranks, 4 suits, and an
initial hand size of 7, how many possible worlds would

we have after the cards are drawn? This can be com-
puted using the multiset coefficient combined with
the inclusion-exclusion principle to account for the fi-
nite multiplicity of 4 for each rank. Fortunately, the
multiplicities are evenly distributed, and we quickly
encounter a case where the reserved elements ex-
ceed the cardinality of the hand. To account for the
worst-case scenario, we remove the 7 cards in player
1’s hand from different ranks before calculating the
number of ways the second hand could be drawn.
Finally, we avoid double-counting worlds where both
players have the same hand.

hand1 =
((
13

7

))
− 13

((
13

7− 5

))
hand2 =

((
13

7

))
− 6

((
13

7− 5

))
− 7

((
13

7− 4

))
|S| = hand1 · hand2 −

⌊
hand1
2

⌋
= 2.295.733.083

This is a lot of possible worlds, and it could increase
further depending on how the game plays out. For-
tunately, the other events help narrow down this un-
certainty, as seen in the following example.

Example
In the following example, we simplify our models by
using n = 3 ranks, m = 2 suit size, and an initial
hand size of h = 2. The first row of each world rep-
resents player 1’s hand followed by the probability it
assigns to that world. The same applies to the sec-
ond row for player 2. For brevity, we focus on each
player’s hand and omit the remaining cards in the
deck. We do not show each event that has occurred
or the atomic propositions used to enforce the game
rules. We also do not explicitly show reflexive or tran-
sitive arrows, though they are always assumed to be
present. In each figure, the actual world is enclosed
in a box. Initially, there are 21 possible worlds:

w1:
{1, 1} 16
{2, 2} 16

w2:
{1, 1} 23
{2, 3} 16

w3:
{1, 1} 16
{3, 3} 16

w7:
{1, 2} 16
{3, 3} 23

w6:
{1, 2} 13
{2, 3} 13

w :
{0, 0} 00
{0, 0} 00

w5:
{1, 2} 13
{1, 3} 13

w4:
{1, 2} 16
{1, 2} 16

w11:
{1, 3} 13
{2, 3} 13

w10:
{1, 3} 16
{2, 2} 23

w9:
{1, 3} 16
{1, 3} 16

w8:
{1, 3} 13
{1, 2} 13

w :
{0, 0} 00
{0, 0} 00

w :
{0, 0} 00
{0, 0} 00

w :
{0, 0} 00
{0, 0} 00

w :
{0, 0} 00
{0, 0} 00

w14:
{2, 2} 16
{3, 3} 16

w13:
{2, 2} 23
{1, 3} 16

w12:
{2, 2} 16
{1, 1} 16

w18:
{2, 3} 16
{2, 3} 16

w17:
{2, 3} 13
{1, 3} 13

w16:
{2, 3} 13
{1, 2} 13

w15:
{2, 3} 16
{1, 1} 23

w19:
{3, 3} 16
{1, 1} 16

w20:
{3, 3} 23
{1, 2} 16

w :
{0, 0} 00
{0, 0} 00

w21:
{3, 3} 16
{2, 2} 16

Figure 1: The world model after each player has drawn 2
cards.

1We would also have to record how many ranks share the same optimal probability to distribute the subjective occurrence
probability properly.

5 of 12

Here, the Bayesian Kripke model captures an addi-
tional dimension in the decision-making, as players
also take into account the likelihood of a particular
hand being drawn from the deck. Notice that in each
row, the probabilities assigned by player 1 to the dif-
ferent worlds sum to 1 since one of the worlds it
cannot distinguish between must be the actual one.
The same applies to each column for player 2.

w7:
{1, 2} 16
{3, 3} 23

w6:
{1, 2} 13
{2, 3} 23

w :
{0, 0} 00
{0, 0} 00

w :
{0, 0} 00
{0, 0} 00

w5:
{1, 2} 13
{1, 3} 13

w4:
{1, 2} 16
{1, 2} 13

w :
{0, 0} 00
{0, 0} 00

w14:
{2, 2} 16
{3, 3} 13

w13:
{2, 2} 23
{1, 3} 13

w12:
{2, 2} 16
{1, 1} 13

w18:
{2, 3} 16
{2, 3} 13

w17:
{2, 3} 13
{1, 3} 13

w16:
{2, 3} 13
{1, 2} 23

w15:
{2, 3} 16
{1, 1} 23

Figure 2: The world model after player 1 asks for cards
of rank 2. Eliminating all worlds where player 1, did not
have a card with rank 2. ASK2,1,2 holds in all worlds.

When updating the model (see definition 4), we first
eliminate the worlds that do not satisfy the precondi-
tion. In S′ we have narrowed down the worlds which
satisfy the precondition of the ask events.

S′ ={(w5, ask2,2,1,2), (w13, ask2,1,1,2),
(w17, ask2,2,1,2)}

To show how probabilities are updated we will use
w13 as an example. To make it clear what worlds we
are writing about we will use them as arguments to
the pre-function since they satisfy the corresponding
precondition. Here we see w13 has a greater weight
because the hand consists of two identical cards.

µ2(w13, ask2,1,1,2) =
µ2(w13) · pre2(ask2,1,1,2 | w13)∑
(s ′,e ′)∈S′ µ2(s

′) · pre2(e ′ | s ′)

=
1
6 · 1

1
3 ·
1
2 +

1
6 · 1 +

1
3 ·
1
2

=
1

3

w6:
{1, 2, 2} 23
{3} 23

w4:
{1, 2, 2} 13
{1} 13

w18:
{2, 2, 3} 13
{3} 13

w16:
{2, 2, 3} 23
{1} 23

Figure 3: The world model after player 2 gives their cards
of rank 2. Eliminating all worlds where player 2 did not
have a card of rank 2 to give.

w6:
{1, 2, 2} 23
{3} 1

w4:
{1, 2, 2} 13
{1} 1

Figure 4: The world model after player 1 asks for cards
of rank 1. Eliminating all worlds where player 1, did not
have a card with rank 1. ASK1,1,2 holds in all worlds

w6:
{1, 2, 2} 1
{3} 1

Figure 5: The world model after player 2 tells player 1 to
go fish. Eliminating all worlds where player 2, has a card
of rank 1. GOFISH holds in all worlds

w6:
{1, 2, 2, 3} 1
{3} 12

w22:
{1, 2, 2, 1} 1
{3} 12

Figure 6: The world model after player 1 draws a card.
Introducing a world to represent the possible cards player
1 could have drawn from the pile. This reintroduces un-
certainty for the opponent

4 Implementation

Simulation of GoFish2

We previously calculated that there are
2.295.733.083 possible worlds after each player
draws 7 cards. Therefore, if we want to run sim-
ulations we have to compromise otherwise the sim-
ulation will run out of memory. Our compromise
is only representing one level of knowledge. This
means we can not model statements such as player
1 knows player 2 knows that player 1 has 2 cards
with rank 8 (K1K2R821). However, we are able to
model statements such as player 1 knows player 2 has
2 cards with rank 8 K1R8

2
2, and more importantly

assign probabilities to worlds where that statement
is true. This is critical because knowledge about the
opponent having a certain amount of ranks is almost
certainly lost, when the opponent draws a card, since
it might introduce a possible world where they have
3 cards with rank 8 (K1(R822 ∨ R832)). When we
only have one level of knowledge, the player’s beliefs
do not depend on each other, which means we can
represent them independently of each other. This
reduces the state space from O(N ·M) to O(N+M),
where N and M are the combinations of cards each
player believes their opponent might have.

However, the core part of the logic stays the same
as we use Product Update (Definition 4) to calcu-
late how states change probability every time a player
learns something. We emulate that the players do
not know which strategy their opponent uses, by as-
suming that they played a random legal move when
calculating pre(askr,t,i ,j | s), which is also the as-
sumption we made when we modelled the program.
For performance reasons, the simulation uses inte-
gers to model Rr ki and the other atomic proposi-
tions TURNi , GOFISH, and ASKr,i ,j are modelled
implicitly through control flow.

2https://github.com/MarioRojoVicente/LogicalUncertaintyFinal

6 of 12

https://github.com/MarioRojoVicente/LogicalUncertaintyFinal

Deep Learning "playing" GoFish

With the goal of exploring the idea of an au-
tonomous agent interacting in this environment a
Q-Learning, value-based, model-free Reinforcement
Learning(RL) algorithm, is implemented. This will
try to learn a value, represented as a Q-value(Q(s,
a)), which estimates the expected cumulative reward
of taking an action a in a state s, and following the
optimal policy thereafter. By only using the informa-
tion of its own hand and the expected hand of the
opponent, the deep learning agent is faced against
other agents.

Winning as the only signal worth rewarding?

It has been hypothesized that setting a win(+1:win,
-1:loose) as the only reward signal would give the
highest degree of freedom for the model to learn
heuristics of its own. The results showcase(Fig. 7)
that the reward mechanism is too sparse. Given the
size of possible state-action pairs that the agent can
explore, it is infeasible to explore a representative
enough sample of the state space to figure out opti-
mal policies for every state. Thus, although well per-
forming against "weak" heuristics such as "random"
or "exploratory", the agent severely under-performs
against sophisticated heuristics such as "Finish Fast"
or "Hoarding".

Figure 7: Training outcomes of Q-learning based player
against "FinishFast" heuristic.

A realistic avenue for improvement consists in intro-
ducing intermediate rewards, that would allow the
agent to get feeback on its behaviour with higher
frequency. Such devised reward system, consisting
of (Win:+1.0, Loose:-1.0, Correct Prediction of op-
ponent’s card: +0.1, Incorrect Prediction of oppo-
nent’s card:-0.05, Draw one card form the deck: -
0.01, Complete a book: +0.5) yielded significantly
better results(Fig.8, when trained against the same
heuristic("FinishFast"):

Figure 8: Training outcomes of Q-learning based player
against "FinishFast" heuristic, with intermediate rewards.

5 Evaluation
To asses the significance of modeling epistemic
knowledge in our particular scenario we implemented
a set of heuristics. These can be subdivided into
two groups, those limited to the use of preposi-
tional logic (GoForCloserPoint, referred to as GFCP
in the following table) and those that include epis-
temic logic on their assessment of the best course
of action. We also implemented a random choice
heuristic that serves as a baseline for performance
comparisons and included the deep learning model
previously discussed.

These heuristics are all briefly explained:

• Random: asks for a random rank.

• GoForCloserPoint: asks for the rank the player is
closer to completing.

• Hoarding: asks for the rank the enemy is more
probable to have.

• FinishFast: asks for the rank of which is more
probable the enemy player has all cards the player
is missing.

• Exploration: asks for the rank we are less sure the
enemy player has (reduces uncertainty).

• ExplotationExploration: mixes the policies of Fin-
ishFast and Exploration, but only exploits (acts as
FinishFast) if the probability is above the estab-
lished threshold.

Based on the outcomes of the benchmarking we can
conclude that epistemic logic plays a significant role
in strategies for card games such as Go Fish given the
performance of the epistemic heuristics against Go-
ForCloserPoint (the only heuristic together with Ran-
dom that makes no use of epistemic logic). Another
conclusion that can be drawn is that heuristics with
a focus on exploitation prove better for the game
of Go Fish given that our top performing heuristics
(FinishFast and Hoarding) are purely exploitative.

Based on the Deep learning approach we can see that
none of the classical heuristics are optimal, since the
deep learning algorithm is able to learn an approach
that beats each of them. Therefore if you can learn

7 of 12

the strategy of your opponent you can adapt and
beat them as seen in table 1 in the Appendix.

6 Conclusion and Further Work
We have successfully implemented a complex logic
scenario through the card game "GoFish". Although
due to the infeasibility of representing second-order
knowledge, first-order knowledge has been success-
fully handled by a set of agents which have interacted
with the environment and each other, with different
goals and strategies.

The performances of the agents, when paired against
each other, reveal the strengths and weaknesses of
their strategies. From the benchmarks we deduce
that heuristics which make use of epistemic logic out-
perform those that only implement prepositional logic
and that more aggressive heuristics perform gener-
ally better. Apart from that Hoarding seems to be
the hardest strategy to adapt to, as expressed by
it´s performance against Q-learning with a 25% win
rate, probably because its strategy is the most com-
plex, using probabilities to make informed decisions.
Another interesting result is the difficulty(relatively
to other heuristics) of deep learning to beat random.
Perhaps this showcases, that it is more difficult to
learn how to play against an agent that does not fol-
low any pattern or one whose strategy is complex,
and difficult to grasp

Nevertheless, the outcome of this work is consid-
ered successful. Through formalized propositional
and epistemic logic, the game has been implemented;
the agents developed and the interactions between
them have been recorded. Therefore providing proof
of the feasibility of this system to model complex
environments.

On the other hand, limitations and avenues for im-
provement have been also uncovered:

• Even in a relatively simple and controlled scenario,
such as this game, the order of magnitude of pos-
sible worlds that have to be considered consti-
tutes a real challenge. On consumer hardware,
a set of 5000 simulated games between two AI
players, without considering higher-order knowl-
edge than first, run for about 10 hours. This is a
non-negligible aspect, especially when treating real-
world complex scenarios.

• Deep learning approaches struggle with the exten-
sive state space, and sparse reward mechanisms are
unable to capture optimal strategies. A non-biased
reward system for a reinforcement learning model
such as the one implemented in this work, is yet to
be devised.

• It would be interesting to extend our formalization
and implementation to accommodate more than
two players, as the game is often played with more
players.

References
[1] Lasse Dissing Hansen and Thomas Bolander. Implementing theory of mind on a robot using dynamic

epistemic logic. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intel-
ligence, pages 1615–1621. International Joint Conference on Artificial Intelligence Organization, 2020.
ISBN 978-0-9992411-6-5. doi: 10.24963/ijcai.2020/224. URL https://ijcai20.org/. Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020 ; Conference date: 07-01-2021
Through 15-01-2021.

[2] Bicycle Playing Cards. Go fish, 2024. URL https://bicyclecards.com/how-to-play/go-fish/.
Accessed: 2024-12-03.

[3] Andreea Achimescu, Alexandru Baltag, and Joshua Sack. The probabilistic logic of communication and
change. Journal of Logic and Computation, 29(7):1015–1040, January 2016. ISSN 0955-792X. doi:
10.1093/logcom/exv084. URL http://dx.doi.org/10.1093/logcom/exv084.

[4] Ronald Fagin and Joseph Y. Halpern. Reasoning about knowledge and probability. Journal of the
ACM, 41(2):340–367, March 1994. ISSN 1557-735X. doi: 10.1145/174652.174658. URL http:
//dx.doi.org/10.1145/174652.174658.

[5] Jan van Eijck and François Schwarzentruber. Epistemic Probability Logic Simplified. In Advances in
Modal Logic, Groningen, Netherlands, 2014. URL https://hal.science/hal-02534272.

[6] Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of communication and change. Information
and Computation, 204(11):1620–1662, 2006. ISSN 0890-5401. doi: https://doi.org/10.1016/j.ic.2006.
04.006. URL https://www.sciencedirect.com/science/article/pii/S0890540106000812.

8 of 12

https://ijcai20.org/
https://bicyclecards.com/how-to-play/go-fish/
http://dx.doi.org/10.1093/logcom/exv084
http://dx.doi.org/10.1145/174652.174658
http://dx.doi.org/10.1145/174652.174658
https://hal.science/hal-02534272
https://www.sciencedirect.com/science/article/pii/S0890540106000812

A Contributions Per Group Member
Mario Rojo Vicente: I was in charge of implementing the heuristics and the benchmarking code, as well
as writing the Background and Evaluation sections of this paper.

Stine Lund Madsen: I primarily focused on modelling the game and discussing its base implementation. I
was responsible for the Bayesian Kripke Model subsection and the calculation of possible worlds after cards
had been drawn. Additionally, I contributed to the Event Model and Example subsections.

Frithjof Prochnow Sletten: I implemented the Python simulation, based on ideas found together with the
group. I wrote the corresponding simulation section in the report. I also contributed to the Event Model
and the Example subsections.

Artur Adam Habuda: Probability modeling, Deep Learning model design and implementation, introductory
and closing statements.

B Full benchmarking results

Random GFGC Hoarding FinishFast Exploration ExtExr Q-learning
Random X 0.87 0.21 0.18 0.77 0.19 0.26
GFGC 0.13 X 0.07 0.04 0.22 0.05 0.10

Hoarding 0.79 0.93 X 0.44 0.96 0.52 0.25
FinishFast 0.82 0.96 0.56 X 0.97 0.61 0.16
Exploration 0.23 0.78 0.04 0.03 X 0.04 0.15

ExtExr 0.81 0.95 0.48 0.39 0.96 X 0.17
Q-learning 0.74 0.90 0.75 0.84 0.85 0.83 X

Table 1: This table captures the probability of an artificial intelligence based on the heuristic on every row beating one
that follows the heuristics on every column, averaged over a 1000 games. Note that on the ExplotationExploration
the threshold was hand-tuned to 0.2. Note that GFGC stands for GoForCloserPoint and ExtExr for ExplotationEx-
ploration. The results obtained by the deep learning player, are the outcome of a 500-round training process, against
every opponent.

C The Probabilistic Logic of Communication and Change
The following definitions are all from the paper The Probabilistic Logic of Communication and Change[3].

Definition 1. (Bayesian Kripke models). Given sets Ag and At, a Bayesian Kripke model is a quadruple
M = (S,∼, µ, V) where:

• S is a non-empty set of states.

• ∼ is a family of equivalence relations ∼a on S, one for each agent a ∈ Ag.

• µ is a family of functions µa : S → (S → [0, 1]), one for each agent a ∈ Ag, whose values are denoted
by µsa(s

′) and satisfy the conditions:

– (SDP): if s ∼a t then µsa(s
′) = µta(s

′), for all s ′ ∈ S (from [4]);

– (CONS): µsa(t) = 0 if s ≁a t (from [4]);

– (CAUT): s ≁a t if µsa(t) = 0 (from [5]);

– (PROB): for every s ∈ S,
∑
t∈S µ

s
a(t) = 1.

• V : At → P(S) is a valuation function

Definition 2. (Substitutions [6]). A substitution is a function σ : At → LPLCC that maps all but a finite
number of propositional atoms into themselves. Let dom(σ) def

= {p ∈ At | σ(p) ̸= p} be the the domain of
σ. Let subLPLCC denote the set of all such possible substitution functions and ϵ the identity substitution.

Definition 3. (Event Models). An event model over LPLCC is the quintuple A = (E,∼,PRE, pre, sub)
where:

• E is a finite non-empty set of events.

9 of 12

• ∼ is a set of equivalence relations ∼a for each agent a ∈ Ag.

• PRE : E → P(LPLCC) is a map, such that Φ def
=

⋃
e∈E PRE(e) is finite set of pairwise inconsistent

formulas.

• pre is a family of functions prea : Φ → (E → [0, 1]) for each a ∈ Ag assigning to each precondition
φ ∈ Φ a subjective occurrence probability distribution over E (i.e.

∑
e∈E prea(φ)(e) = 1), such that

prea(φ)(e) = 0 iff φ /∈ PRE(e).

• sub : E → subLPLCC assigns a substitution function to each event in E.

Definition 4. (Product Update). The update product of a static Bayesian Kripke model M = (S,∼, µ, V)
with an event model A = (E,∼,PRE, pre, sub) is the weighted epistemic model M ⊗ A = (S ⊗ E,∼, µ, V)
where:

• S ⊗ E def
= {(s, e) | s ∈ S, e ∈ E, (M, s) ⊨

∨
PRE(e)}.

• (s, e) ∼a (s ′, e ′) iff s ∼a s ′ and e ∼a e ′.

• Ley D def
=

∑
(s ′,e ′)∼a(w,g)(µ

w
a (s

′) · prea(e ′ | s ′)), and put:

µ(w,g)a (s, e)
def
=

{
µwa (s)·prea(e|s)

D if (s, e) ∼a (w, g)
0 otherwise

(Note that D ̸= 0 for (w, g) ∈ S ⊗ E)

• V (p) = {(s, e) | M, s ⊨ sub(e)(p)}

Definition 5. (Semantics of PLCC). The semantics for LPLCC is given by a relation ⊨ between pointed
models (M,s), with M = (S,∼, µ, V) and s ∈ S, and formulas φ, such that

M, s ⊨ true iff always

M, s ⊨ p iff always

M, s ⊨¬φ iff M, s ̸⊨ φ
M, s ⊨φ ∧ ψ iff M, s ⊨ φ and M, s ⊨ ψ

M, s ⊨ [a]φ iff for all t ∈ S : if s ∼a, t then M, t ⊨ φ

M, s ⊨ [e]φ iff M, s ⊨
∨
PRE(e) then M × A, (s, e) ⊨ φ

where e is an event in action model A

M, s ⊨ [π]φ iff for all t ∈ S : i f sRπt then M, t ⊨ φ

M, s ⊨
n∑
j=1

α · Pa(Φj) iff
n∑
j=1

α · µsa(φj) ≥ β

where µsa(φj) is an abbreviation for
∑
s ′∈S,s ′⊨φj µ

s
a(s
′), and Rπ is a binary relation given by

sRat iff s ∼a t
sRπ1∪π2t iff sRπ1 ∪ Rπ2t
sRπ1;π2t iff sRπ1 ; sRπ2t There is w, such thatsRπ1w and wRπ1t

sRπ1∗t iff s(Rπ)∗t(where (Rπ)∗ is the reflexive transitive closure of Rπ)

sRπ?t iff s = t and s ⊨ φ

Where ⊨ ϕ if M, s ⊨ ϕ for every pointed Bayesian Kripke model M, s.

10 of 12

D Probabilities Calculation: a detailed explanation
Belief Updates
*Intialization: each player starts believing that the oponent has 0 cards of each rank in their hands. Prob-
ability of an Opponent Having a Rank

• Purpose: Estimate the likelihood that the opponent has at least one card of a specific rank.

• Computation:

P (opponent has rank r) =
∑
w∈W

p(w) · ⊮(rank r count > 0 in w)

where:

– W : the set of all possible worlds consistent with the current beliefs.

– p(w): the probability of world w .

– ⊮: an indicator function (1 if the opponent has the rank r , 0 otherwise).

Probability of an Opponent Having Exactly n Cards of a Rank

• Purpose: Determine the likelihood of the opponent holding exactly n cards of a specific rank.

• Computation:

P (opponent has exactly n cards of rank r) =
∑
w∈W

p(w) · ⊮(rank r count = n in w)

Updating Probabilities After an Action

• When an action (e.g., asking for a card or drawing from the deck) is taken, some possible worlds
become inconsistent with the new information.

• Steps:

1. Remove Inconsistent Worlds: Worlds where the updated information (e.g., the opponent does
not have rank r after being asked for it) does not match are discarded.

2. Re-normalize Probabilities: Adjust the probabilities of the remaining worlds to ensure they sum
to 1:

p′(w) =
p(w)∑

w ′∈W ′ p(w
′)

where W ′ is the set of remaining worlds.

Heuristics Using Probabilities
HoardingHeuristic

• Goal: Ask for the rank that the opponent is most likely to have.

• Computation:

– Compute P (opponent has rank r) for each rank r .

– Select the rank r with the highest probability.

ExplorationHeuristic

• Goal: Reduce uncertainty by targeting the rank with the most uncertainty (probability closest to 0.5).

• Computation:

– Compute P (opponent has rank r) for each rank r .

11 of 12

– Select the rank r where P (opponent has rank r) is closest to 0.5:

r = argmin
r
|P (opponent has rank r)− 0.5|

FinishFastHeuristic

• Goal: Complete books by asking for ranks where the opponent is likely to have all the remaining cards
needed.

• Computation:

– For each rank r , compute the probability of the opponent having exactly n cards of r , where n
is the number needed to complete the book.

– Select the rank r with the highest probability.

ExploitationExplorationHeuristic

• Goal: Combine exploitation (choose high-probability actions) and exploration (reduce uncertainty).

• Computation:

1. Define a threshold T (e.g., 0.7).

2. For each rank r :

– If P (opponent has rank r) > T , choose the rank (exploitation).

– Otherwise, use exploration logic to target ranks with the most uncertainty.

Deck Probabilities
• When Drawing a Card from the Deck: Compute the probability of drawing a card of rank r based

on the remaining cards in the deck:

P (draw rank r) =
remaining cards of rank r

total cards remaining in the deck

12 of 12

	Introduction
	Background
	Modelling
	Implementation
	Evaluation
	Conclusion and Further Work
	Contributions Per Group Member
	Full benchmarking results
	The Probabilistic Logic of Communication and Change
	Probabilities Calculation: a detailed explanation

